We appreciate your patience while we actively develop and enhance our content for a better experience.
Sample Code
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit def linear_model(x, a, b): return a * x + b def main(): print("This program demonstrates how to use SciPy to fit a linear model to a set of data points.") # Generate synthetic data x_data = np.linspace(0, 10, 20) y_data = 2 * x_data + 1 + np.random.normal(0, 1, len(x_data)) # Fit the linear model to the data params, _ = curve_fit(linear_model, x_data, y_data) # Generate the fitted curve x_fit = np.linspace(0, 10, 100) y_fit = linear_model(x_fit, *params) # Plot the data and the fitted curve plt.scatter(x_data, y_data, label='Data') plt.plot(x_fit, y_fit, color='red', label='Fitted Linear Model') plt.title('Linear Model Fitting using SciPy') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.show() if __name__ == "__main__": main()