We appreciate your patience while we actively develop and enhance our content for a better experience.
Sample Code
import numpy as np from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense from tensorflow.keras.optimizers import Adam from tensorflow.keras.losses import SparseCategoricalCrossentropy from tensorflow.keras.metrics import Accuracy def main(): print("This program demonstrates how to use Keras to create a neural network to classify handwritten digits from the MNIST dataset.") # Load the MNIST dataset (X_train, y_train), (X_test, y_test) = mnist.load_data() # Normalize the data X_train, X_test = X_train / 255.0, X_test / 255.0 # Create a simple neural network model model = Sequential([ Flatten(input_shape=(28, 28)), Dense(128, activation='relu'), Dense(10, activation='softmax') ]) # Compile the model model.compile(optimizer=Adam(), loss=SparseCategoricalCrossentropy(), metrics=[Accuracy()]) # Train the model model.fit(X_train, y_train, epochs=5) # Evaluate the model on the test dataset _, accuracy = model.evaluate(X_test, y_test) print(f"Accuracy of the neural network on the test set: {accuracy * 100:.2f}%") if __name__ == "__main__": main()